CHAPTER

EE SAMPLE

http://www.facebook.com/share.php?u=http://www.informIT.com/title/9780134123486
http://twitter.com/?status=RT: download a free sample chapter http://www.informit.com/title/9780134123486
https://plusone.google.com/share?url=http://www.informit.com/title/9780134123486
http://www.linkedin.com/shareArticle?mini=true&url=http://www.informit.com/title/9780134123486
http://www.stumbleupon.com/submit?url=http://www.informit.com/title/9780134123486/Free-Sample-Chapter

LEARN MORE PYTHON 3
THE HARD WAY

LEARN MORE PYTHON 3
THE HARD WAY

The Next Step for New Python Programmers

Zed A. Shaw

vvAddison-Wesley

Boston * Columbus ¢ Indianapolis * New York « San Francisco « Amsterdam « Cape Town
Dubai ¢ London ¢ Madrid ¢ Milan « Munich ¢ Paris « Montreal « Toronto Delhi « Mexico City
Sao Paulo « Sydney ¢ Hong Kong ¢« Seoul « Singapore ¢ Taipei * Tokyo

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks.
Where those designations appear in this book, and the publisher was aware of a trademark claim, the designations
have been printed with initial capital letters or in all capitals.

The author and publisher have taken care in the preparation of this book, but make no expressed or implied warranty
of any kind and assume no responsibility for errors or omissions. No liability is assumed for incidental or
consequential damages in connection with or arising out of the use of the information or programs contained herein.
For information about buying this title in bulk quantities, or for special sales opportunities (which may include
electronic versions; custom cover designs; and content particular to your business, training goals, marketing focus, or
branding interests), please contact our corporate sales department at corpsales@pearsoned.com or (800) 382-3419.
For government sales inquiries, please contact governmentsales@pearsoned.com.

For questions about sales outside the U.S., please contact intics@pearson.com.

Visit us on the Web: informit.com/aw

Library of Congress Control Number: 2017946529

Copyright © 2018 Zed A. Shaw

All rights reserved. Printed in the United States of America. This publication is protected by copyright, and
permission must be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system, or
transmission in any form or by any means, electronic, mechanical, photocopying, recording, or likewise. For

information regarding permissions, request forms and the appropriate contacts within the Pearson Education Global
Rights & Permissions Department, please visit www.pearsoned.com/permissions/.

ISBN-13: 978-0-13-412348-6
ISBN-10: 0-13-412348-4

1 17

mailto:governmentsales@pearsoned.com
mailto:intlcs@pearson.com
http://VisitusontheWeb:informit.com/aw
http://www.pearsoned.com/permissions/
mailto:corpsales@pearsoned.com

Contents

Preface Xiv
Its AllPersonal XV
Using the Included Videos XV

PART I Initial Knowledge 2
What If | Hate Your Stupid Personal Process Zed? 3
What If | Find Out I'm Terrible? 3

Exercise 0 TheSetup 6
A Programmer's Editoro oo 6
Python3.6. 6
AWorking Terminal 6
A Working pip+virtualenv Configuration. 7
LabJournal 7
A Github.com Account L 7
git .. 7
Optional: Screen-Recording Software 8
FurtherStudy 8

Exercise1 OnProcess. 10
Exercise Challenge 11
Study Drills 12
FurtherStudy 12

Exercise 2 On Creativity 14
Exercise Challenge 14
Study Drill 15

Exercise 3 OnQuality 16
Exercise Challenge 18
Study Drill 18

PART Il QuickHacks 20
How to Practice Creativity 21
AProcessforEarlyCoders 22
An Early Coder’'s Coding Process 23

Exercise 4 Dealing with Command Line Arguments 24
Exercise Challenge 24
Solution 25

Study Drills 25

vi CONTENTS

Exercise5 cat. 26
Exercise Challenge 26
Solution 27
Study Drills 27
FurtherStudy 27

Exercise 6 find L 28
Exercise Challenge 29
Study Drills 30
FurtherStudy 30

Exercise 7 grep 32
Exercise Challenge 32
Study Drills 33
FurtherStudy 33

Exercise 8 cut. 34
Exercise Challenge 35
Study Drill 35
FurtherStudy 35

Exercise 9 sed 36
Exercise Challenge 36
Study Drills 37
FurtherStudy 37

Exercise 10 sort 38
Exercise Challenge 38
Study Drills 39
FurtherStudy 39

Exercise11 uniq 40
Exercise Challenge 40
Study Drills 41
FurtherStudy 41

Exercise 12 Review 42
Exercise Challenge 42
Study Drills 43
FurtherStudy 43

PART Ill Data Structures 46
Learning Quality through Data Structures 47

How to Study Data Structures 48

vii

CONTENTS

Exercise 13 Single Linked Lists 50
Description 50
Controller 52
Test . . 53
Introductory Auditingo 55
Exercise Challenge 56
Auditing 56
Study Drill o 56
Exercise 14 Double Linked Lists 58
Introducing Invariant Conditions 59
Exercise Challenge 60
Study Drill 61
Exercise 15 Stacksand Queues 62
Exercise Challenge 62
Breaking It. 64
FurtherStudy 64
Exercise 16 Bubble, Quick, and Merge Sort 66
Exercise Challenge 66
Study Bubble Sort 68
Merge Sort 69
Merge Sort CheatMode 70
QuickSort 71
Study Drills 71
Exercise 17 Dictionary oL 74
Exercise Challenge 74
Doing a “Code Master Copy” 74
CopytheCode 75
Annotatethe Code 78
Summarize the Data Structure L. 78
Memorizethe Summary 79
ImplementfromMemory L 80
Repeat. e 80
Study Drills 81
Break It 81
Exercise 18 Measuring Performance 82
TheTools 82
timeit 82

cProfileand profile 83

viii CONTENTS

Analyzing Performance 84
Exercise Challenge 86
Study Drills 86
Breaking It. 86
FurtherStudy 86
Exercise 19 Improving Performance 88
Exercise Challenge 89
FurtherStudy 90
Exercise 20 BinarySearchTrees 92
BSTree Requirements L. 92
Deleting 93
Exercise Challenge 94
Study Drills 94
Exercise 21 BinarySearch 96
Exercise Challenge 96
Study Drills 96
FurtherStudy 97
Exercise 22 Suffix Arrays 98
Exercise Challenge 929
Study Drills 99
FurtherStudy 99
Exercise 23 Ternary SearchTrees 100
Exercise Challenge 100
Study Drills 102
Exercise 24 FastURLSearch 104
Exercise Challenge 104
Study Drills 105
FurtherStudy 105
PART IV Intermediate Projects 106
Tracking YourDefects 107
Exercise 25 xargs 108
Exercise Challenge 108
Study Drills 108
Exercise 26 hexdump 110
Exercise Challenge 111
Study Drill 112

FurtherStudy 112

CONTENTS ix
Exercise 27 tr 114
Exercise Challenge 114
A Criticism of 45-Minute Blocks 115
Study Drills 115
Exercise 28 sh 116
Exercise Challenge 116
Study Drill o 117
FurtherStudy 117
Exercise 29 diffandpatch 118
Exercise Challenge 118
Study Drill o 119
FurtherStudy 119
PARTYV ParsingText 120
Introducing Code Coverage 120
Exercise 30 Finite State Machines 122
Exercise Challenge 123
Study Drills 125
FurtherStudy 125
Exercise 31 RegularExpressions 126
Exercise Challenge 127
Study Drills 128
FurtherStudy 128
Exercise 32 Scanners 130
Puny Python Scanner, 131
Exercise Challenge 133
Study Drills 133
FurtherStudy 133
Exercise 33 Parsers 136
Recursive DescentParsing 137
BNF Grammars e 138
Quick DemoHack Parser 140
Exercise Challenge 142
Study Drill o 142
FurtherStudy 142
Exercise 34 Analyzers 144
Visitor Pattern 144

A Short Puny Python Analyzer 145

X

CONTENTS

Parser versus Analyzer 148
Exercise Challenge 148
Study Drills 149
FurtherStudy 149
Exercise 35 Interpreters 150
Interpreters versus Compilers 150
PythonlIsBoth 151
How to Write an Interpreter 151
Exercise Challenge 152
Study Drills 152
FurtherStudy 152
Exercise 36 Simple Calculator 154
Exercise Challenge 154
Study Drills 155
FurtherStudy 155
Exercise 37 Little BASIC 156
Exercise Challenge 156
Study Drills 157
PART VI SQL and Object Relational Mapping 158
Understanding SQL Is Understanding Tables 158
WhatYou'llLearn 159
Exercise 38 IntroductiontoSQL 160
WhatIs SQL? 160
TheSetup 161
Learning SQL Vocabulary 162
SQLGrammar 163
FurtherStudy 163
Exercise 39 CreatingwithSQL 164
CreatingTables 164
Creating a Multi-table Database 165
InsertingData. 165
Insert ReferentialData 166
Exercise Challenge 166
FurtherStudy 167
Exercise 40 ReadingwithSQL 168

SelectacrossMany Tables 168

CONTENTS Xi
Exercise Challenge 169
FurtherStudy 170
Exercise 41 UpdatingwithSQL 172
Updating ComplexData 172
ReplacingData, 173
Exercise Challenge 173
FurtherStudy 174
Exercise 42 DeletingwithSQL 176
Deleting Using OtherTables 176
Exercise Challenge 177
FurtherStudy 178
Exercise 43 SQL Administration 180
Destroying and Altering Tables 180
Migrating and EvolvingData 181
Exercise Challenge 182
FurtherStudy 182
Exercise 44 Using Python’s Database APl 184
Learningan APl 184
Exercise Challenge 185
FurtherStudy 185
Exercise 45 CreatinganORM 186
Exercise Challenge 186
FurtherStudy 187
PART VIl Final Projects 188
WhatIs Your Process? 189
Exercised46 blog 190
Exercise Challenge 190
Study Drills 191
Exercise 47 bc 192
Exercise Challenge 192
Study Drill 193
Exercised48 ed 194
Exercise Challenge 194
Study Drills 195
Exercise49 sed 196
Exercise Challenge 197

Study Drill 197

xii CONTENTS

Exercise 50 vi. 198
Exercise Challenge 198
Study Drills 199

Exercise 51 lessweb L. 200
Exercise Challenge 200
Breaking It. 200
Study Drills 201

Exercise 52 morewebo Lo 202
Exercise Challenge 202
Breaking It. 203
FurtherStudy 203

This page intentionally left blank

Xiv

Preface

rocess, creativity, and quality. Burn these three words into your mind while you read this book.

Process. Creativity. Quality. This book may be full of exercises that teach important topics every
programmer should know, but the real knowledge you’ll gain from the book is these three words. My
goal in writing this book on programming is to teach you what I've known to be the three most important
constants in software. Without process you'll flounder around wondering how to get started and have
problems maintaining progress on long projects. Without creativity you’ll be unable to solve the problems
you'll encounter every day as a programmer. Without quality you'll have no idea if anything you're doing
is any good.

Teaching you these three concepts is easy. | could simply write three blog posts and say, “There ya go,
now you know what those three words mean.” That isn’t going to make you a better programmer and
definitely not a person who can work on their own as a developer for the next 10 or 20 years. Simply
knowing about process doesn’t mean you can actually apply it in real practice. Reading a blog post
about creativity doesn’t help you find out how you are creative with code. To really understand these
complex topics you'll want to internalize them, and the best way to do that is to apply them to simple
projects.

As you work through the exercises in this book | will tell you which of the three you’ll be working on. This
is a change from my other books where | try to be sneaky and have you learn concepts without your
realization. I'm going to be explicit this time because it's important that you keep the concept firmly in
your mind so you can practice it throughout the exercise. You will then evaluate how well your attempt
at applying the practice worked and what you can do to improve the next time. A key component of this
book is the ability to reflect on your own capabilities objectively and improve yourself. You do this best
by being focused on one technique or practice at a time while accomplishing some other goal.

In addition to process, creativity, and quality you’ll also learn what | consider six important topics a
modern programmer needs to function. These may change in the future, but they’ve been essential for
decades now, so unless there’s a drastic shift in technology they’ll still apply. Even something like SQL in
Part Vl is still relevant because it teaches you how to structure data so that it doesn’t logically fall apart
later. Your secondary educational goals are the following:

1. Getting Started: You learn quick hacks to start a project.

2. Data Structures: | don’t teach every single data structure, but | get you started down the path
to learning them more completely.

3. Algorithms: Data structures are fairly pointless without a way to process them.

4. Parsing Text: The foundation of computer science is parsing, and knowing how to do that helps
you learn programming languages as they become popular.

PREFACE XV

5. Data Modeling: | use SQL to teach you the basics of modeling stored data in a logical way.

6. Unix Tools: Command line tools are used throughout the book as projects for you to copy, and
you then also learn advanced Unix command line tools.

At each part of the book you’ll focus on one or two of the three practices at a time until finally, in Part VII,
you'll apply them all as you build a simple website. The final projects aren’t sexy. You won't learn how
to create your next startup, but they are nice little projects that will help you apply what you know while
learning Django.

It’s All Personal

Many other books are designed to teach you these three concepts in the context of a team. When these
books teach you about process it’s all about how you work with another person on a project to maintain
code. When they teach creativity it's all about how you go to meetings with your team to ask customers
questions. Sadly most of these “professional” books don’t really teach quality. This is all fine, but there’s
two problems with these team-style books for most beginners:

1. You don't have a team, so you can’t practice what they’re teaching. The team-oriented books
are designed for junior programmers who already have jobs and need to work on the team
they just joined. Until that happens to you, any team-oriented book is fairly useless to you.

2. What's the point of learning how to work on a team if your own personal process, creativity,
and quality is a total mess? Despite what the fans of “team players” say, the vast majority of
programming tasks are done solo, and your evaluation of your skills is usually done solo. If
you work on a team, but your code is always low quality and you constantly have to ask team
members for help, you get a low review from your boss. For all their talk of how awesome teams
are, they never blame the team when a junior programmer can’t work alone. They blame the
junior programmer.

This book is not about being a good worker drone at Mega Enterprise, LLC. This book is about helping
you improve your personal skills so that when you get a job you can work alone. If you improve your
personal process then it makes sense that you'll be a stronger contributor on a team. It also means you
can start and develop your own ideas, which is where the vast majority of projects start.

Using the Included Videos

Learn More Python 3 the Hard Way has an extensive set of videos demonstrating how the code works,
debugging, and, most importantly, solutions to the challenges. The videos are the perfect place to
demonstrate many common errors by breaking the Python code on purpose and showing you how to
fix it. | also walk through the code using debugging and interrogation tricks and techniques. The videos

xvi LEARN PYTHON 3 THE HARD WAY

are where | show you how to “stop staring and ask” the code what’s wrong. You can watch these videos
online at informit.com/title/9780134123486.

Register your copy of Learn More Python 3 the Hard Way on the InformIT site for convenient
access to updates and corrections as they become available. To start the registration process, go
to informit.com/register and log in or create an account. Enter the product ISBN (9780134123486)
and answer the simple proof-of-purchase question. Then look on the Registered Products tab for an
Access Bonus Content link next to this product, and follow that link to access the bonus materials.

http://onlineatinformit.com/title/9780134123486
http://toinformit.com/registerandloginorcreateanaccount

28

find

opefully you are discovering the various ways you sabotage yourself even before you begin to work.

Maybe it's not that dramatic, but you should at least be identifying things you can improve in your
environment that are making it difficult for you to start working. These little exercises are a good way
for you to focus on the beginning since they are not that important and fit into a time scale that you
can analyze. If these projects were hours long, you'd get bored reviewing what you’ve done and making
improvements. A short 45-minute project is something you can take notes about (or record) and review
very quickly.

This is a pattern | use throughout my studies. I'll identify something that | need to improve on, such as
how | get started, or how | handle a tool. Then I'll devise an exercise that simply focuses on that. When |
was learning to paint | struggled with going outside to paint trees. | sat down and looked at the problems,
and the first thing | identified was | simply dragged too much stuff with me. | also kept all my things in
random places around my apartment. | purchased a specific bag just for my painting supplies and kept
that bag ready to go. When | wanted to paint outside | grabbed this bag and walked to one of a few
places, rather than planning elaborate painting hikes. | practiced just grabbing my bag, walking to one of
two places, setting up, doing a painting, then walking home until the process was smooth as silk. After
that | watched Bob Ross to figure out how to paint trees because that guy can crank out some trees.

This is what you should be doing. One place many people waste time and effort is in their work area. Do
you have a dedicated place to work that never changes? | ditched my laptop and now just use a desktop
machine so that | can have a consistent place to do my work. This also saved my back and neck from
hauling around that chunk of metal and gave me a bigger screen to work with, all improving my ability to
work. In this exercise, | want you to focus on your work area and make sure that it's ready to go before
you begin:

1. Do you have enough light? Do you need less light?

2. How'’s your chair? Do you need a better keyboard?

3. What other tools are getting in the way? Are you trying to do Unix-like things on a Windows
machine? Trying to do Mac things on Linux? Don’t go buy a new computer, but consider it for
your next big purchase if you find there’s just too much friction for what you want to do.

4. How’s your desk? Do you even have one? Do you hack in cafés all day with terrible chairs and
too much coffee?

5. How about music? Do you listen to music with words? | find that if | listen to music without
words it's easier for me to focus on the voice in my head that helps me write or code.

6. Do you work in an open plan office and your coworkers are annoying? Go buy yourself a pair
of big over-the-ear headphones. When you wear them it's obvious you're not paying attention,

FIND 29

so people will leave you alone and they'll feel it's less rude than if you're plugged in and they
can’t see. This will also block out distractions and help you focus.

Spend this exercise thinking about topics like this and trying to simplify and enhance your environment.
One thing, though: Don’t go buying crazy contraptions and spending tons of money. Just identify prob-
lems, and then try to find ways to fix them.

Exercise Challenge

In this challenge you are implementing a basic version of the find tool for finding files. You run find
like this:

find . —name "*.txt" —print

That will search the current directory for every file ending in . txt and print it out. find has an insane
number of command line arguments, so you are not expected to implement them all in one 45-minute
session. The general format of find is the following:

1. The directory to start searching in: . or /usr/local/
2. Afilter argument like -name or -type d (files of type directory)

3. An action to do with each found file: -print

You can do useful things like execute a command on every found file. If you want to delete every Ruby
file in your home directory you can do this:

find . —name "*.rb" —exec rm {} \;

Please don’t run this without realizing it will delete all the files that end in . rb. The -exec argument
takes a command, replaces any instance of {} with the name of the file, and then stops reading the
command when it hits a ; (semicolon). We use \ ; in the preceding command because bash and many
other shells use ; as part of their language, so we have to escape it.

This exercise will really test your ability to use either argparse or sys.argv. | recommend you run
man find to get a list of arguments, and then try using find to figure out exactly what arguments you'll
implement. You only have 45 minutes, so you probably can’t get too many, but -name and -type are
both essential as well as -print and -exec. The -exec argument will be a challenge though, so save
it for last.

When you implement this, try to find libraries that can do the work for you. You’ll definitely want to look at
the subprocess module and also the glob module. You will definitely want to look at 0s more carefully
as well.

30 LEARN PYTHON 3 THE HARD WAY

Study Drills

1. How much of find did you get implemented?
2. What are the libraries you found to improve this implementation?

3. Did you count finding libraries as part of your 45 minutes? You could say that research before
you start hacking doesn’t count, and I'd be alright with that. If you want the extra challenge,
then include your research in the 45 minutes.

Further Study

How much of find can you implement in more 45 minute hacks? Maybe make this your hacking warmup
challenge for the next week to see what you can get done. Remember that you should be trying to slap
together the best ugly hack you can. Don’t worry, | won't tell the Agile people you are just having fun.

This page intentionally left blank

168

Reading with SQL

O ut of the CRUD matrix you only know create. You can create tables and you can create rows in
those tables. I'll now show you how to read, or in the case of SQL, SELECT:
ex5.sql

SELECT * FROM person;
SELECT name, age FROM pet;

SELECT name, age FROM pet WHERE dead = 0;

NoubhWwWNRE

SELECT * FROM person WHERE first name != "Zed";
Here’s what each of these lines does:

Line1 This says “select all columns from person and return all rows.” The format for SELECT
is SELECT what FROM tables(s) WHERE (tests), and the WHERE clause is optional.
The * (asterisk) character is what says you want all columns.

Line 3 In this one I'm only asking for two columns, name and age, from the pet table. It will return
all rows.

Line5 Now I'm looking for the same columns from the pet table, but I'm asking for only the rows
where dead = 0. This gives me all the pets that are alive.

Line 7 Finally, I'm selecting all columns from person just like in the first line, but now I'm saying
only if they do not equal “Zed.” That WHERE clause is what determines which rows to return or
not.

Select across Many Tables

Hopefully you're getting your head around selecting data out of tables. Always remember this: SQL ONLY
KNOWS TABLES. SQL LOVES TABLES. SQL ONLY RETURNS TABLES. TABLES. TABLES. TABLES.
TABLES! | repeat this in this rather crazy manner so that you will start to realize that what you know
in programming isn’t going to help. In programming you deal in graphs, and in SQL you deal in tables.
They’re related concepts, but the mental model is different.

Here’s an example of where it becomes different. Imagine you want to know what pets Zed owns. You
need to write a SELECT that looks in person and then “somehow” finds my pets. To do that you have
to query the person_pet table to get the id columns you need. Here’s how I'd do it:

READING WITH SQL 169

ex6.sql
1 SELECT pet.id, pet.name, pet.age, pet.dead
2 FROM pet, person pet, person
3 WHERE
4 pet.id = person pet.pet id AND
5 person pet.person id = person.id AND
6 person.first name = "Zed";

Now, this looks huge, but I'll break it down so you can see it's simply crafting a new table based on data
in the three tables and the WHERE clause:

Line1 | only want some columns from pet, so | specify them in the select. In the last exercise
you used * to say “every column” but that’s going to be a bad idea here. Instead, you want to
be explicit and say what column from each table you want, and you do that by using
table.column asin pet.name.

Line2 To connect pet to person I need to go through the person_pet relation table. In SQL
that means | need to list all three tables after the FROM.

Line 3 Start the WHERE clause.

Line4 First, | connect pet to person pet by the related id columns pet.id and
person_pet.id.

Line5 AND | need to connect person to person_pet in the same way. Now the database can
search for only the rows where the id columns all match up, and those are the ones that are
connected.

Line 6 AND | finally ask for only the pets that | own by adding a person.first name test for
my first name.

Exercise Challenge

1. Write a query that finds all pets older than 10 years.
2. Write a query to find all people younger than you. Do one that’s older.

3. Write a query that uses more than one test in the WHERE clause using the AND to write it. For
example, WHERE first name = "Zed" AND age > 30.

4. Do another query that searches for rows using three columns and uses both AND and OR
operators.

5. This may be a mind-blowing, weird way to look at data if you already know a language like
Python or Ruby. Take the time to model the same relationships using classes and objects, then
map it to this setup.

170 LEARN PYTHON 3 THE HARD WAY

6. Do a query that finds your pets you've added thus far.
7. Change the queries to use your person. id instead of the person. name like I've been doing.

8. Go through the output from your run, and make sure you know what table is produced for which
SQL commands and how they produced that output.

Further Study

Continue to deep dive into SQLite3 by reading the documentation for the SELECT command at https:/
sqlite.org/lang_select.html and also read the documentation for the EXPLAIN QUERY PLAN feature at
https://sqlite.org/eqp.html. If you ever wonder why SQLite3 did something, EXPLAIN is your answer.

https://sqlite.org/lang_select.html
https://sqlite.org/eqp.html
https://sqlite.org/lang_select.html

This page intentionally left blank

204

INDEX

Index

Symbols bugs persisting over long time periods, 90
. (period), accept single character input, 126 formal study of, 48
| (pipe), 117 further study, 105

improving performance using, 88
memorize, attempt, check process, 48—49
for sorting. See Sorting algorithms

+ (plus sign), accept if regex has one or more of
previous character, 126
$ (dollar sign), anchor end of string, 126
() (parentheses), capture enclosed part of, 126 suffix array, 98-99
* (asterisk), accept or skip character repeatedly, suffix tree, 98
126 ALTER TABLE
? (question mark), previous part of regular destroying/altering tables, 180—181
expression is optional, 126 exercise administering databases, 182
[X-Y], class or range of characters from analyze() methods, 148
XtoY, 126 Analyzers
" (caret), anchor beginning of string, 126 comparing with parsers, 148
> (less than), function of, 27 creating simple calculator, 154—155
example, 145-148
exercise challenge, 148
overview of, 144
study drills and further study, 149
visitor pattern use with, 144—-145
Annotate, CASMIR

Numbers
3P (Personal Process Practice), 38
45-minute time limit

benefits of, 24

counting/not counting research time in, 30

criticism of, 115

failure and, 25

practicing creativity, 21-22
recording/annotating, 28

in review of project strategy, 42
time management and, 32
warm up hack, 26

Dictionary code, 78
overview of, 74
API, database API, 184-185
argparse package
exercise using find command, 29
exercise working with command line
arguments, 24-25
Arguments. See Command line arguments

A Arrays, suffix array, 98—-99
ABNF. See Augmented BNF (ABNF) ASCII, viewing file contents when not in text
Agile, example of Team Process, 10 format, 111
Algebraic calculator, 154—155 assert calls, repetitive use, 60
Algorithms asyncio module, 202
binary search. See Binary search algorithm Atom text editor, 6

INDEX 205

Auditing
conducting basic code audits, 55-56
implanting xargs, 108—109
reviewing code critically, 47
tracking defects, 107
Augmented BNF (ABNF)
applying BNF grammars, 138-141
creating interpreter, 157
creating simple calculator, 154—155
studying RFC 7230, 202
Automation, how to proactive creativity, 21

B
Back ache, focusing on work habits and
behaviors, 35
Backus-Naur Form (BNF)
augmented. See Augmented BNF (ABNF)
creating simple calculator, 154—155
grammars, 138—139
bash, running programs from Terminal, 116
BASIC, implementing BASIC interpreter, 156—157
bc language
creating simple calculator, 154
exercise challenge, 192-193
further study, 192—193
overview of, 192
Behavior-driven development, 115
Binary search algorithm
exercise challenge, 96
overview of, 96
study drills and further study, 96-97
Binary search trees (BSTree)
binary search algorithm compared with, 96
creating tree from characters, 136—137
deleting nodes, 93
exercise challenge, 94
overview of, 92-93
study drills, 94
suffix tree compared with, 98
ternary search trees compared with, 100
walking the tree, 144
blog tool
exercise challenge, 190-191

overview of, 190
study drill, 191
BNF. See Backus-Naur Form (BNF)
Breaking data structures
Dictionary, 81
improper use of recursion, 89
performance measurement, 86
stacks, 64
Breaking web server
lessweb, 200-201
moreweb, 203
Breaks
focusing on work habits and behaviors, 34
remembering to take, 43
BSTree. See Binary search trees (BSTree)
Bubble Sort
cProfile applied to, 83—84
exercise challenge, 66—-68
overview of, 66
reasons for avoiding, 88
studying, 68—69
timeit module applied to, 82—83
Bugs
auditing SingleLinkedList, 55-56
benefit of external review, 16—-17
cleaning up code, 43
invariant use in testing, 60
lurking in algorithms over long time periods, 90
“off by one” error, 64
printing debugging output, 51
quality as low defect rate, 46—47
separating debugging from performance
analysis, 85
tracking defects, 107

Cc
C language, handling socket connections and,
203
cal, 44
Calculators
creating algebraic calculator, 154
exercise challenge, 154—-155
study drills and further study, 155

206 LEARN PYTHON 3 THE HARD WAY

CASMIR (copy, annotate, summarize, memorize,
implement, repeat)
annotate Dictionary code, 78
copy Dictionary code, 75-78
implement Dictionary code, 80
memorize Dictionary code, 79-80
repeat Dictionary code, 80-81
summarize Dictionary code, 78-79
cat
creating replica of, 26
exercise challenge and solution, 2627
study drills and further study, 27
Chair
focusing on work habits and behaviors,
34-35
making improvements to work area, 28
Challenge Mode
process of working with exercises in book, 3
purpose of, 24
Characters. See also Text
parsing, 136—137
in regular expressions, 126
tr tool for translating character streams, 114
cheat mode, merge sort, 70-71
Checklists
practicing creativity, 21
process for early coders, 22—-23
chroot function, 201
Clients, http.client, 200-202
Code
auditing, 55-56
auditing critically, 47
creating code master copy, 74-75
erasing and starting over, 21
performance analysis, 85
process for early coders, 22—-23
quality as understandable code, 46—47
removing repetition from code, 43
testing run time using cProfile, 83
tracking defects, 107
Code coverage
overview of, 120-121
testing, 196

Columns
comparing SQL to Excel, 161
exercise administering database, 182
Command line arguments. See also by individual
commands
dealing with, 24
exercise challenge and solution, 24-25
study drills, 25
Compilers, interpreters compared with, 150
Computers, making improvements to work area, 28
Concatenate. See cat
Concentration, programming and, 115
Controllers
data structure concepts, 50-51
SingleLinkedList, 52
Stack control class, 63
Copy, annotate, summarize, memorize,
implement, repeat. See CASMIR (copy,
annotate, summarize, memorize,
implement, repeat)
Copy command, CASMIR, 75-78
Copying code, from dictionary, 75-78
count (), avoiding unneeded repetitive
calculations, 88
cProfile, 83-84
CPUs, performance analysis, 85
CREATE
creating multi-table database, 164—165
creating tables, 164
SQL operation, 161-162
Create, read, update, delete. See CRUD (create,
read, update, delete)
CREATE TABLE, evolving schema to new form,

181-182
Creativity
defined, 2

exercise challenge, 14-15

fluidity and relaxation as key to, 46
how to practice, 21-22

not letting metrics undermine, 38
overview of, 14

starting as enemy of, 20-21

study drill, 15

INDEX 207

Critical thinking
auditing code, 47
balancing with creativity, 46
CRUD (create, read, update, delete)
creating an ORM, 187
creating tables, 164
deleting data, 176-178
reading (selecting) data, 168—169
updating data, 172-174
csh, running programs from Terminal, 116
curses module, 198
cut
exercise challenge and study drills, 35
removing duplicates from list, 40

D
da Vinci, Leonardo, 16-17
Data
inserting into database, 165-166
migrating and evolving, 181-182
replacing using DELETE/INSERT, 173
updating complex data, 172—-173
Data structures. See also by individual types
breaking, 64
further study, 105
how to study, 48-49
improving performance by using built-in data
structures, 89
improving performance by using correct data
structure, 88
learning quality through, 47
overview of, 46—47
Database API
exercise challenge, 185
further study, 185
learning an API, 184-185
overview of, 184
Databases. See also SQL
comparing SQL to Excel, 161
creating multi-table database, 164—165
Debugging
invariants and, 60

printing debugging output, 51

separating from performance analysis, 85
Defects

auditing SingleLinkedList, 55-56

benefit of external review, 16-17

fixing, 47

invariant use in testing, 60

lurking in algorithms over long time periods, 90

“off by one” error, 64

printing debugging output, 51

quality as low defect rate, 4647

separating debugging from performance

analysis, 85

tracking, 107
DELETE

replacing data using DELETE/INSERT, 173

SQL operation, 161-162
delete, binary search tree operations, 93
Desk, making improvements to work area, 28
dict class, 74
Dictionary

annotate, 78

binary search tree compared with, 92

breaking data structures, 81

copy, 75-78

creating code master copy, 74-75

exercise challenge, 74

fast URL search, 105

implement, 80

improving performance by using correct data

structure, 88

memorize, 79-80

overview of dict class, 74

repeat, 80-81

study drills, 81

summarize, 78-79
diff command

exercise challenge, 118-119

overview of, 118

study drills and further study, 119
Directories

searching with find, 29

unwanted directory traversal, 200201

208 LEARN PYTHON 3 THE HARD WAY

Divide and conquer algorithm, 66
Django, 187
Domains, attacking (breaking) web server, 201
Don’t Repeat Yourself (DRY), 43
DoublelLinkedList
binary search, 96-97
exercise challenge, 60
improving performance by using correct data
structure, 88
invariant conditions, 59-60
overview of, 58-59
queue compared with, 64
study drills, 61
DROP
removing tables (DROP TABLE), 180
SQL operation, 162
DRY (Don’'t Repeat Yourself), 43
Duplicates, removing from list, 40

E
ed command
creating curses Ul, 198-199
exercise challenge, 194
overview of, 194
study drill, 195
testing, 196
Edges (pointers or links)
data structure concepts, 50-51
in DoubleLinkedList, 58
Effective TCP/IP Programming (Snader), 203
Efficiency, inspecting use of time, 32
Emacs text editor, 6
Ergonomics, focusing on work habits and
behaviors, 34—-35
Errors
auditing SingleLinkedList, 55-56
benefit of external review, 16-17
cleaning up code, 43
exercise using analyzers, 148
invariant use in testing, 60
lurking in algorithms over long time
periods, 90
“off by one,” 64

printing debugging output, 51
quality as low defect rate, 46
separating debugging from performance
analysis, 85
in studying data structures, 48
tracking, 107
Events
as function of subclass, 125
organizing as set of states, 122—-123
Excel, comparing SQL to, 161
exec argument
executing actions on multiple files, 29
inspecting use of time, 32
Exercises, process of working with exercises in
book, 2-3
Expression-based languages, vs.
statement-based, 149
eXtreme Programming, example of Team
Process, 10

F
false, applying 45-minute hacks, 44
Fast URL search
exercise challenge, 104—105
overview of, 104
study drills and further study, 105
Fear, blocking learning, 27
Files
dumping content to screen, 26
finding .txt files, 29
searching for text patterns using regular
expressions, 32—-33
viewing file contents when not in text format,
111
Filters, using in searches, 29
find
exercise challenge, 29
implanting xargs, 108
pattern for locating improvements, 28—29
study drills and further study, 30
find all
suffix array searches, 99
ternary search trees (TSTree), 101

INDEX 209

find_longest
suffix array searches, 99
ternary search trees (TSTree), 101
find_part, ternary search trees (TSTree), 101
find_shortest
suffix array searches, 99
ternary search trees (TSTree), 101
Finite state machines (FSMs)
exercise challenge, 123-125
handling modal nature of ed command, 194
overview of, 122—123
study drills and further study, 125
fish, running programs from Terminal, 116
Flags, exercise working with command line
arguments, 24
Flash cards, learning an API, 184
Formats, viewing file contents when not in text
format, 111
Friction. See also Problem identification
eliminating in projects, 21
solving problems creatively, 46
FROM, SQL operation, 162
FSM. See Finite state machines (FSMs)
FSMRunner class, 125
Functions
converting loose hack into set of, 43
defining for bc language, 192
exercise using analyzers, 148
0s module, 201

G
get, binary search tree operations, 92
GET, unwanted HTTP requests, 201
git, setup requirements for book exercises, 7
glob module, exercise using find command, 29
Grammars
analyzing semantics, 144
Backus-Naur Form (BNF), 138—-139
creating parser for, 137
creating simple calculator, 154—155
parser enforcing, 136
SQL, 163
studying RFC 7230, 202

Graphs, tracking defects, 107
grep
exercise challenge, 32-33
searching for text patterns using regular
expressions, 32
study drills and further study, 33

H
Habits, inspecting use of time, 32
Hacks/hacking
benefit of external review, 16—-17
determining what your process is, 189
keeping it loose and flowing, 22
making clean beginning, 42—-43
process for early coders, 22—-23
working with command line arguments, 25
Healthy habits, 34—-35
Help, exercise working with command line
arguments, 24
hex function, viewing file contents when not in
text format, 111
hexadump
exercise challenge, 111
overview of, 110
study drills and further study, 112
history
printing out list of commands that you’ve run,
40
tr tool for determining frequency of word use,
114
HTML pages, template for, 190
HTTP
attacking (breaking) web server, 201
parsers for, 202—203
requests, 202
http.client, 200-201
http.server, 200-203

1
IDE, text editors compared with, 6
if-statement
defining for bc language, 192
handling branching, 122

210 LEARN PYTHON 3 THE HARD WAY

Implement command, CASMIR
Dictionary code, 80
overview of, 75
IN, SQL operation, 162
“input triggers,” events as, 122—-123
INSERT
inserting data, 165-166
replacing data using DELETE/INSERT, 173
SQL operation, 162
inspect module, viewing Python objects and
classes, 125
int function, viewing file contents when not in
text format, 111
interpret method, 151-152
Interpreters
compilers compared with, 150-151
creating simple calculator, 154—-155
exercise challenge, 152
how to write, 151-152
implementing BASIC interpreter, 156—157
overview of, 150
study drills and further study, 152
using regular expressions to match tokens,
130
Invariant conditions, DoubleLinkedList,
59-60

J
Journal. See Lab Journal

K
KCacheGrind, performance analysis tool, 86

Keyboard, making improvements to work area, 28

L
Lab Journal
improving mental attitude by observing fears,
27
process of working with exercises in book, 3
reviewing process in, 196
setup requirements for book exercises, 7
lessweb
attacking (breaking) web server, 200-201

creating web server, 200

exercise challenge, 200

study drills, 201
lex tool, researching, 193
Libraries

asyncio module, 202

exercise using find command, 29-30

researching charting libraries, 41
Lighting, making improvements to work area, 28
Linked lists

double. See DoubleLinkedList

single. See SinglelLinkedList
Links (pointers or edges)

data structure concepts, 50-51

in DoublelLinkedList, 58
list operation, binary search, 93, 96
Lists. See also Checklists

binary search, 96

sorting, 66
Loops, avoiding loops inside loops, 88
1s

applying 45-minute hacks, 43

sorting text, 38-39

M
man
access manual pages, 108
investigating tr command, 115
Markdown, as blogging format, 190
Master copy
creating code master copy, 74-75
of ed command, 194
match function, of recursive parser, 138
Math operators, defining for bc language, 192
Memorize, attempt, check, in studying data
structures, 48—49
Memorize command, CASMIR
Dictionary code, 79-80
overview of, 75
Merge sort
binary search tree compared with, 92
cheat mode, 70-71
exercise challenge, 66—-68

INDEX 211

improper use of recursion, 89
improving performance by using correct
algorithm, 88
overview of, 66
performance analysis, 84—86
study drills, 71-72
studying, 69-70
Metrics
building Personal Process Practice (3P), 38
determining what your process is, 189
evaluating and improving work, 36
improving performance, 89
for quality, 47
in review of project strategy, 42
Microsoft Excel, comparing SQL to, 161
Migration, evolving database schema to new
form, 181-182
mkdir, applying 45-minute hacks, 43
moreweb
attacking (breaking) web server, 203
exercise challenge, 202
further study, 203
overview of, 202
Music, making improvements to work area, 28

N

Nodes
comparing stacks and queues, 62
data structure concepts, 50-51
deleting, 93
in DoubleLinkedList, 58

(o]
Object Oriented Programming (OOP), 187
Object Relational Mapper (ORM)
creating, 159, 186
exercise challenge, 186—-187
further study, 187
oct function, viewing file contents when not in
text format, 111
od command, exercise reusing hexdump code,
112
“off by one” errors, 64

OOP (Object Oriented Programming), 187

OpenSSL project, bugs lurking in algorithms over
long time periods, 90

Operators, defining for bc language, 192

Options, exercise working with command line
arguments, 25

ord function, viewing file contents when not in
text format, 111

ORM. See Object Relational Mapper (ORM)

0s module, 201

os.chroot function, researching, 201

OWASP Top 10 Vulnerabilities, 200-201

P
P-code (pseudo-code), implementing algorithm
based on, 66-68
Parsers
BNF grammars, 138-139
comparing analyzer with, 148
creating simple calculator, 154—155
example of recursive descent parser,
140-141
exercise challenge, 142
for HTTR, 202—203
implementing bc language, 192—193
overview of, 136-137
recursive descent parsing, 137—-138
study drills and further study, 142
Parsing text
analyzers, 144—-149
code coverage, 120-121
creating simple calculator, 154—155
finite state machines, 122—-125
implementing BASIC interpreter, 156—157
interpreters, 150—152
overview of, 120
parsers, 136—142
regular expressions, 126-128
scanners, 130-134
patch command
exercise challenge, 118-119
overview of, 118
study drills and further study, 119

212 LEARN PYTHON 3 THE HARD WAY

peek function, of recursive parser, 138
Performance analysis
analyzing performance, 84-86
binary searches, 96
cProfile and profile, 83-84
data structure exercise, 64
exercise challenge, 86
overview of, 82
study drills and further study, 86
timeit module, 82-83
Performance analyzer, running, 85
Performance improvement/tuning
exercise challenge, 89
further study, 90
overview of, 88—89
Personal Process Practice (3P), 38
Personal Processes
overview of, 10—-11
Personal Process Practice (3P), 38
pip, setup requirements for book exercises, 7
Pipe (), 117
Pointers (edges or links)
data structure concepts, 50-51
in DoubleLinkedList, 58
pop
comparing stacks and queues, 62
inefficiencies of SingleLinkedList, 58
Positional arguments, exercise working with
command line arguments, 25
POSIX, file redirection features in Terminal, 26
POST, HTTP requests, 201
Posture, focusing on work habits and behaviors,
34-35
prev, in DoubleLinkedList, 58
print, printing files, 29
Problem identification
and correction, 28
in review of project strategy, 42
solving problems creatively, 46
Process
defined, 2
determining what your process is, 189
for early coders, 22-23

exercise challenge, 11-12
means of moving through (slogging through) a
project, 20
Personal Processes, 10—11
reviewing how it is working, 196
study drill and further study, 12
Team Processes, 10
Productivity, improving. See also Performance
analysis, 38
profile, 83-84
Programmer done, vs. quality, 4647
Programming, concentration in, 115
Programming languages
bc language, 192—-193
expression-based vs. statement-based, 149
implementing BASIC interpreter, 156—157
Pseudo-code (p-code), implementing algorithm
based on, 66-68
push
comparing stacks and queues, 62
inefficiencies of SingleLinkedList, 58
pyprof2calltree, performance analysis tool,
86
pytest
for Dictionary, 77-78
for sorting algorithms, 68—71
Python 3.6, setup requirements, 6

Q
Quality
balancing creativity with, 46
defined, 2, 46
exercise challenge, 18
learning through data structures, 47
overview of, 16-17
study drills, 18
Query, exercise administering database, 182
Queues
breaking data structures, 64
exercise challenge, 62—63
further study, 64
overview of, 62

INDEX 213

Quick sort
exercise challenge, 66—-68
improving performance by using correct
algorithm, 88
overview of, 66
study drills, 71-72
studying, 71

R
RDP. See Recursive descent parser (RDP)
re module, handling regular expressions, 33
READ, SQL operation, 161-162
readline, implementing sh command, 116-117
Recursion, improper use of, 89
Recursive descent parser (RDP). See also
Parsers
example of recursive descent parser, 140-141
implementing bc language, 192-193
overview of, 137—-138
Referential data, inserting into database, 166
Regular expressions
altering text using regular expression
replacement pattern, 36-37
exercise challenge, 127
overview of, 126-127
parsers and, 136-137
scanning text for tokens, 130
searching for text patterns using, 32—33
study drills and further study, 128
Repeat command, CASMIR
Dictionary code, 80-81
overview of, 75
REPLACE, replacing data in SQL database, 173
repr (), printing debugging output, 51
Reusability, of software, 196
Review, benefit of external review, 16-17
Review of project strategy
exercise challenge, 42—43
overview of, 42
study drills and further study, 43—44
RFC 7230, 202
Rituals, inspecting use of time, 32
rm, applying 45-minute hacks, 43

rmdir, applying 45-minute hacks, 43
Routing, fast URL search, 104—-105
Rows
comparing SQL to Excel, 161
deleting, 176-177
rsync tool, sending blog to server, 190
Run charts
of percentage of features completed, 38
researching charting libraries, 41
for spotting changes in behavior, 37

S
Scanners
brain operating as, 136
combining Scanner class with Parser class,
142
creating simple calculator, 154—-155
example scanning Python code, 131-132
exercise challenge, 133
overview of, 130-131
study drills and further study, 133-134
Schema, evolving database schema to new form,
181-182
Screen recording software, 8
Scripts, exercise working with command line
arguments, 24—-25
Scrum, example of Team Process, 10
Searches
binary search, 96-97
binary search trees (BSTree), 92-94
fast URL search, 104—-105
suffix array, 99
ternary search trees (TSTree), 100-102
sed
altering text using regular expression
replacement pattern, 36-37
exercise challenge, 197
overview of, 196
study drill, 197
study drills and further study, 37
SELECT
deleting data from SQL database, 176
reading (selecting) data, 168—169

214 LEARN PYTHON 3 THE HARD WAY

SELECT (continued)

SQL operation, 162

updating complex data, 172—-173
Self-criticism techniques, 16-17
Semantics, of grammars, 144
Servers

creating, 202

http.server module, 200-201,

202-203

set, binary search tree operations, 93
SET, SQL operation, 162
Setup requirements, for book exercises

Python version 3.6, 6

terminal, 67

text editor, 6-8
sh command

exercise challenge, 116-117

implementing, 116

study drills and further study, 117
shift/unshift

comparing stacks and queues, 62

inefficiencies of SingleLinkedList, 58
SingleLinkedList

auditing, 55-56

controller operations, 52

exercise challenge, 55-56

overview of, 50-51

stack compared with, 64

study drills, 56-57

test operations, 53-55
skip function, of recursive parser, 138
SLY Parser Generator, 142, 157
Sockets, handling TCP/IP sockets, 202
Software, reuse, 196
sort

exercise challenge, 38-39

ordering text, 38

removing duplicates from list, 40

study drills and further study, 39
Sorting algorithms

exercise challenge, 66—-68

overview of, 66

study drills, 71-72

studying bubble sort, 68—69
studying merge sort, 69-70
studying quick sort, 71

Space characters, processing text with cut, 35
Speed, improving performance, 89
Spikes

function of, 116

implementing sh command, 116-117
learning an API, 184

working with command line arguments, 25

Spreadsheets, comparing SQL to Excel, 161
SQL

administration, 180

creating multi-table database, 164—165

creating tables, 164

deleting data, 176-177

destroying/altering tables, 180

exercise challenge for creating tables,
166-167

exercise challenge for deleting data, 177-178

exercise challenge for managing database,
182

exercise challenge for selecting data,
169-170

exercise challenge for updating data,
173-174

further study, 163

further study for creating tables, 167

further study for deleting data, 178

further study for making changes to database,
182

further study for selecting data, 170

further study for updating data, 174

grammar constructs of, 163

inserting data, 165-166

learning SQL vocabulary, 162

migrating and evolving data, 181-182

overview of, 160-161

reading (selecting) data, 168—169

replacing data using DELETE/INSERT, 173

setting up SQLite3, 161-162

understanding tables, 158-159

updating complex data, 172

INDEX 215

SQL for Smarties (Celko), 187
SQL injection, not having in ORM, 187
SQLite3
further study, 170, 174
learning an API, 184-185
setting up, 161-162
Stacks
breaking data structures, 64
comparing queues with, 63
exercise challenge, 62—63
further study, 64
overview of, 62
Standard deviation
improving accuracy of run chart, 39
in troubleshooting problems, 40
Starting
enemy of creativity, 20-21
GO GO GO, 40
in review of project strategy, 42
Statement-based languages, vs.
expression-based, 149
States, organizing events as set of, 122—-123
Strings, regular expressions and, 126
Study Drills, process of working with exercises in
book, 3
subprocess module
implementing find command, 29
implementing sh command, 116-117
xargs and, 108
Suffix array
exercise challenge, 99
fast URL search, 105
overview of, 98—99
study drills and further study, 99
Suffix tree, 98
Summarize command, CASMIR
Dictionary code, 78-79
overview of, 74
Symbols, regular expression, 126
sys.argv
using find command, 29
working with command line arguments, 24-25

T
Tables
comparing SQL to Excel, 161
creating, 164
creating multi-table database, 164—165
destroying/altering, 180
key to understanding SQL, 158-159
reading (selecting) data across many,
168-169
removing rows, 176-177
tail, applying 45-minute hacks, 44
TCP/IP
further study, 203
sockets, 202
Team Processes, 10
Template, for HTML pages, 190
Tension, focusing on work habits and behaviors,
35
Terminal
implementing sh command, 116
POSIX file redirection features, 26
setup requirements for book exercises,
6-7
Ternary search trees (TSTree)
creating tree from characters, 136—137
exercise challenge, 100-102
fast URL search, 105
overview of, 100
study drills, 102
walking the tree, 144
Test-driven development (TDD)
code coverage and, 121
determining what your process is, 189
implementing sh command, 116-117
implementing tr command, 114-115
study drills and further study, 119
Test first
TDD development style, 114
“test first” method, 94, 110
Tests
code coverage and, 120-121
for data structures, 47
ed command, 196

216 LEARN PYTHON 3 THE HARD WAY

Tests (continued)
improving performance, 89
invariants and, 60
pytest forDictionary, 77-78
pytest for sorting algorithm, 68—71
SingleLinkedList, 53-55
Stack control class, 63
TDD development style, 114—117
“test first” method, 94, 110
Text
finding .txt files, 29
parsing. See Parsing text
processing with cut, 35
scanning for tokens, 130
searching for text patterns using regular
expressions, 32—-33
sorting, 38-39
tr tool for translating character streams, 114
viewing file contents when not in text format,
111
Text editors
setup requirements for book exercises, 6
Unix, 194-195
vi, 198-199
Theme statement, determining what your
process is, 189
Time management, 32
timeit module, applying to bubble sort, 82—83
Timer
45-minute time limit, 40
benefits of setting time limit, 24
how to proactive creativity, 21
TODO lists. See also Checklists
process for early coders, 22—-23
turning into TDD test, 116
Tokens
parsing, 136—137
patterns of text, 130
tr tool
exercise challenge, 114-115
study drills, 115
translating character streams, 114

Tracking, determining what your process is,
189
Trees
binary search. See Binary search trees
(BSTree)
ternary search. See Ternary search trees
(TSTree)
TSTree. See Ternary search trees (TSTree)
Tumbilr, creating blog, 190

U
Unicode
processing text with cut, 35
library and, 128
uniq
exercise challenge, 40—41
removing duplicates from list, 40
study drills and further study, 41
Unix
bc command, 154
shell operations, 27
text editor, 194
UPDATE
exercise administering database, 182
exercise challenge updating data,
173-174
further study updating data, 174
SQL operation, 161-162
updating complex data, 172
URLs, fast URL search, 104—105

v
Variables
creating simple calculator, 154—-155
defining for bc language, 192
exercise working with command line
arguments, 25
keeping track of variable definitions, 148
vi
exercise challenge, 198—199
overview of, 198
study drills, 199
Vim, programmer’s text editor, 6

INDEX

virtualenv, setup requirements for book
exercises, 7
Visitor pattern
benefits of, 144—-145
how to write interpreters, 152
Vulnerabilities, OWASP Top 10, 200-201

w
Web servers
attacking (breaking), 200—201
creating from scratch, 202-203
creating using http.server module, 201
exercise challenge, 200, 202
study drills and further study, 201, 203
WFM (Works For Me), learning an API, 184
WHERE, SQL operation, 162
Whitespace, regular expression for, 130
Wordpress, creating blog, 190

Work area, making improvements to, 28—29

Work habits, creating healthily habits, 34—35

Works For Me (WFM), learning an API, 184

Wraps, wrapping existing data structure vs.
creating new, 64

X

xargs
exercise challenge, 108
overview of, 108
study drills, 108—109

Y
yacc tool, researching, 193
yes, applying 45-minute hacks, 44

z
zsh, running programs from Terminal, 116

	Cover
	Title Page
	Copyright Page
	Contents
	Preface
	It’s All Personal
	Using the Included Videos

	PART II: Quick Hacks
	Exercise 6 find
	Exercise Challenge
	Study Drills
	Further Study

	PART VI: SQL and Object Relational Mapping
	Exercise 40 Reading with SQL
	Select across Many Tables
	Exercise Challenge
	Further Study

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

